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Ultrahigh-intensity inverse bremsstrahlung
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~Received 28 April 1998!

We study inverse bremsstrahlung in the ultrahigh intensity relativistic regime. The fully relativistic ultrahigh
intensity absorption~emission! coefficient is derived for an arbitrary scattering potential and small-angle
scattering. We find that in the Coulomb field case this absorption~emission! coefficient can be calculated as a
function of the quiver energy, drift momentum, and impact parameter in two complementary regimes:~i! for
remote collisions when the impact parameter is larger than the amplitude of the quiver motion, and~ii ! for
instantaneous collisions when the scattering time is shorter than the period of the wave. Both circular and linear
polarizations are considered, and this study reveals that in this relativistic regime inverse bremsstrahlung
absorption can be viewed as a harmonic Compton resonance heating of the laser-driven electron by the virtual
photon of the ion Coulomb field. The relativistic modification of Marcuse’s effect@Bell Syst. Tech. J.41, 1557
~1962!# are also discussed, and relations with previous nonrelativistic results are elucidated.
@S1063-651X~99!10701-3#

PACS number~s!: 52.40.Nk, 34.80.Qb
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I. INTRODUCTION

The basic physical processes involved in laser-plasma
teraction, up to 1017 W/cm2, are now well understood; on
the other hand, a large number of issues remain open in
study of the relativistic interaction regime abov
1018 W/cm2. Recent advances in pulse compression n
make possible an exploration of laser-plasma interacti
with such fluxes above 1018 W/cm2, thus there is a clea
need to identify and analyze the issues relevant to this u
high intensity~UHI! regime@1#. Among these various issue
UHI inverse bremsstrahlung~IB! is particularly important to
understand energy momentum transfer from an electrom
netic ~EM! laser field to a plasma during solid target expe
ments.

Terawatt to petawatt UHI laser pulses are now conside
as potential candidates to provide highly localized, nonlin
energy deposition~through fast electrons production! in an
inertial fusion target in order to obtain spark ignition of th
compressed fuel. Laser intensities in a range from 1018 to
1021 W/cm2 are thus considered, and the impact of UHI-
on these scenarios remains to be evaluated. Besides
target experiments, UHI-IB is also relevant to understand
early stages of some recently reported efficient heating
emission of energetic electrons from atomic clusters sub
ted to UHI laser pulses@2#.

Up to now, two types of approximations have been us
to study IB in the framework of quantum mechanics: t
Born approximation~when the scattering potential is a
sumed to be weak! @3#, and the low-frequency approximatio
~when the frequency of the EM wave is smaller than
interaction time! @4#. Krall and Watson@5# combined both
results, and showed that the differential cross section for
ser potential scattering has the same form for both limit
cases and can be expressed in terms of the differential c
PRE 591063-651X/99/59~1!/1122~14!/$15.00
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section for electron scattering without the lase EM field, t
so-called Krall-Watson formula.

Relativistic quantum IB has been studied within t
framework of the Born approximation@6,7# and in the low-
frequency approximation@8#; however this quantum formal
ism is limited to classical perturbation expansions and is
relevant to UHI-IB during laser-plasma interaction. In ord
to study UHI-IB during laser-plasma interaction, we will us
a classical relativistic formalism. Classical mechanics p
vides the right framework to describe IB for fluxes in th
range from 1018 to 1021 W/cm2, where the energy exchang
between electrons and EM wave exceeds the energy of
EM quantum\v ~i.e., the interaction is essentially a mult
photon process! @9#.

Nonrelativistic high-frequency resistivity was evaluat
in the 1960s by Dawson and Oberman@10# and Silin@11#. In
addition to this Maxwellian averaged quantity, the nonre
tivistic rate of IB for classical collisions between one ele
tron and an ion population has been calculated in the sm
angle approximation~or ‘‘straight-line path’’ approximation!
@12–14#, but the final result remains an infinite sum of int
grals and does not reveal the scaling of the process w
respect to the various parameters. The classical descrip
of the instantaneous collisions has also been considere
the impact approximation, where it is assumed that the c
lisions take place on a time scale far shorter than the in
action time between the colliding species@15,16#.

The Coulomb field can be treated as a perturbation du
the scattering process for relativistic laser fluxes (eA/mc
'1, whereA is vector potential of the EM wave! provided
the minimum distance between the electron and the ion
such that the Coulomb field remains smaller than the la
field. Given the fact that the velocity of the quiver motio
and drift motion is of the order of the velocity of light, thi
minimum distance isr min;Ar el (r e5e2/mc2 is the classi-
1122 ©1999 The American Physical Society
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PRE 59 1123ULTRAHIGH-INTENSITY INVERSE BREMSSTRAHLUNG
cal electron radius,l is the wavelength of the radiation,c is
the velocity of light, ande andm are the charge and mass
the electron!. A classical relativistic description can be us
if the de Broglie wavelength of a relativistic electronle

5\/p;1029 cm ~p is the electron momentum! is smaller
than the distance between two particles. For typical las
r min51029 cm; thus classical mechanics is valid and the
field remain smaller than the EM field and the Coulomb fie
can be treated as a perturbation@17#.

In this study we shall calculate the energy exchange
tween an EM laser field and an electron population wit
the framework of the random phase approximation; that i
say, we average the final results over the initial phase
electrons entering the scattering region. This averaging
also be presented as the interaction between an infinitely
row electron beam and an EM field in the presence o
scattering potential. Besides the fact that the experime
measurement is naturally phase averaged, this avera
over scattering phases has another advantage: it essen
simplifies the calculation of the energy exchange. This la
point was noted some time ago in the theory of the fr
electron laser, and formulated as Madey’s theorem@18#. This
theorem simplifies the evaluation of the gain for fast wa
devices@19–21#.

This theorem has been demonstrated in general Ha
tonian form for one-dimensional cases, and extended to n
integrable Hamiltonian systems with arbitrary degrees
freedom@20–22#. For a perturbed classical Hamiltonian sy
tem expressed in terms of actions and angles, the state
of this theorem can be summarized as follow: the sec
order change~due to the perturbation! in action variables
averaged over the initial phase can be expressed in term
the first order perturbation, this substantially simplifies c
culations of second order quantities. It can be shown that
theorem has relations with other results, such as the clas
limit of Einstein relations between spontaneous and stim
lated emission,@23# and the fluctuation dissipation theore
@24#.

In addition to this methodological issue concerni
Madey’s theorem, from a phenomenological point of vie
IB can be considered as a conversion of the regular qu
motion energy into drift thermal energy as a result of t
reorientation of the quiver motion into translational moti
during the collision. This efficient conversion process is d
to the occurrence of a set of resonances, identified as Co
ton resonances, induced by the beating between the
wave and the virtual photon of the ion Coulomb field@Eq.
~27!#.

The paper is organized as follows. In Sec. I the problem
formulated within the framework of Hamiltonian dynamic
In Sec. II the expression of the energy exchange betwe
relativistic electron and an UHI EM laser field is derive
with the help of Madey’s theorem. In Sec. III this ener
exchange is calculated and analyzed as a function of
electron momentum, impact parameter, and azimuthal a
for remote collisions, when the impact parameter is lar
than the amplitude of the quiver oscillations. In Sec. IV w
consider the complementary situation of instantaneous c
sions when the scattering time is shorter than the period
the UHI laser wave. In Sec. V the relation with previo
results obtained with different approximations is elucida
s,
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and discussed, and we summarize the main original resul
our study and give our conclusions.

II. ACTION-ANGLE VARIABLES FOR RELATIVISTIC
SCATTERING

The electron motion in a scattering fieldU(r2r0) and a
linearly polarized ~LP! EM wave with vector potential
A(r ,t)5A cos(vx/c2vt)ey , propagating along the vectorn
5ex , is described by Hamilton’s equations derived from t
Hamiltonian:

H~p,r ,t !5A11px
21@A cos~x2t !1py#

21pz
21U~r2r0!,

~1!

where we have used the set of natural unitsm5c5e5v
51, r 0 is the vector specifying the position of the Coulom
center.

We extend the phase space of this dynamical sys
through the introduction of a set of new canonical variab
t,E52H. Then the Hamiltonian becomes

H~p,r ,E,t !5A11px
21@A cos~x2t !1py#

21pz
2

1U~r2r0!1E. ~2!

It is known @25# that the problem of electron motion in
plane wave is integrable, and it is possible to introduce a
of action-angles variablesg,P andF,Q with the help of the
generating function@26#

S~g,P,t,r !5~P–r !2gt1
PyA

g2Px
sin~x2t !

1
A2

8~g2Px!
sin~2x22t !. ~3!

Thus the transformation from the old to the new canoni
variables is defined by the relations

px5Px1
PyA

g2Px
cos~Q11F!1

A2

4~g2Px!
cos~2Q112F!,

py5Py ,

pz5Pz ,

E52g2
PyA

g2Px
cos~Q11F!2

A2

4~g2Px!
cos~2Q112F!,

x5Q12
PyA

~g2Px!
2
sin~Q11F!

2
A2

8~g2Px!
2
sin~2Q112F!, ~4!

y5Q22
A

~g2Px!
sin~Q11F!,

z5Q3 ,
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1124 PRE 59I. YU. KOSTYUKOV AND J. -M. RAX
t52F2
PyA

~g2Px!
2
sin~Q11F!

2
A2

8~g2Px!
2
sin~2Q112F!.

The new Hamiltonian as a function of the new variab
becomes

H~g,P,F,Q!

5AP21M212gB~g,P,F,Q!1B2~g,P,F,Q!2g

2B~g,P,F,Q!1U@r ~g,P,F,Q…2r0#, ~5!

B~g,P,F,Q!5
PyA

g2Px
cos~Q11F!

1
A2

4~g2Px!
cos~2Q112F!,

whereM2511A2/2 is the averaged electron energy in t
LP EM wave without drift motion. The parameterM plays
the role of an effective mass of an electron inside the E
field. This effective mass is an important concept of bo
classical and quantum electrodynamics in a strong fi
Among other processes,M is responsible for a nonlinear fre
quency shift in strong field Compton scattering, and for
enhanced penetration of intense waves in dense plasmas
corresponding Hamilton’s equations describe the evolu
with respect to the timet, so in order to perform furthe
calculations with the previous Hamiltonian we introduce
new timet[F instead oft, the action conjugated toF can
be taken as a new Hamiltonian@27#. Then expressing this
action g in terms of H,P,F, and Q by Eq. ~5!, the final
Hamiltonian describing the evolution becomes

H~g,P,F,Q!5g~H50,P,F,Q!1g. ~6!

Comparing the dynamical equations of Hamiltonians~5! and
~6! it is easy to check that both Hamiltonians~6! describe the
same dynamical system. Considering the scattering field
perturbation,U(r2r0)5mU(r2r0), m!1, we obtain the
final result to first order inm:

H~g,P,F,Q!5g1H0~P!1mH;~P,F,Q!1O~m2!,

H0~P!5AP21M2,

H;~P,F,Q!5F11
B~P,F,Q!

g~P! GU@r ~P,F,Q!2r0#, ~7!

B~P,F,Q![B@g~P!,P,F,Q#,

r ~P,F,Q![r @g~P!,P,F,Q#,

whereg(P)5H0(P) @the relations betweenr andg,P,F,Q
are given by Eq.~4!#. Similarly, for a circularly polarized
~CP! EM wave A(r ,t)5e1A cos(nr2t)1e2A sin(nr2t)
5eyA cos(x2t)1ezA sin(x2t), Hamiltonian ~7! can be de-
rived, and we obtain
s

h
d.

e
he

n

a

x5Q12
PyA

@g~P!2Px#
2
sin~Q11F!

1
PzA

@g~P!2Px#
2
cos~Q11F!,

y5Q22
A

g~P!2Px
sin~Q11F!,

z5Q31
A

g~P!2Px
cos~Q11F!, ~8!

B~P,F,Q!5
PyA

g~P!2Px
cos~Q11F!

2
PzA

g~P!2Px
sin~Q11F!,

M2511A2.

Let us consider the unperturbed motion (m50) described
by the HamiltonianH0(P), and integrate Hamilton’s equa
tion to obtain

F5E
0

t]H~g,P,F,Q!

]g
dt5t,

Q1
~0!~P,t!5E

0

t]H0~P!

]Px
dt5

tPx

g~P!
,

Q2
~0!~P,t!5E

0

t]H0~P!

]Py
dt5

tPy

g~P!
, ~9!

Q3
~0!~P,t!5E

0

t]H0~P!

]Pz
dt5

tPz

g~P!
.

Equations~4! and~9! define the well-known revivalistic orbi
of an electron interacting with the LP EM wave; the s
called drifting ‘‘figure-eight’’ motion@26#. Using Eq.~4! and
averaging Eqs.~9! over the electron oscillations in the EM
wave, we obtain

^x&5tVx , ^y&5tVy , ^z&5tVz . ~10!

Therefore Eqs.~10! describe the drift motion of the ‘‘figure
eight’’ with a drift velocity V5P/g(P) and an average ki-
netic energyg(P)5AP21M2. Note that, in our formulation,
the drift trajectory always passes through the center of
coordinate system, and the position of the scattering cent
determined byr0 . For M2511A2, Eqs.~8! and ~9! define
the relativistic orbit of an electron interacting with the C
EM wave corresponding to drifting circular oscillations@26#.

III. ULTRAHIGH INTENSITY INVERSE
BREMSSTRAHLUNG

The calculation of the action second order change av
aged over initial phases is simplified by the generaliz
Madey’s theorem@22#. Usually this averaging over all initia
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angle variables is assumed for multidimensional Hamilton
systems@21,23#; however, this theorem can be employed
the case of averaging over only one of all initial angle va
ables@20,22#. If we have a nonautonomous dynamic syste
with N degrees of freedom described by the Hamiltonian

H~ I,u,t !5H0~ I ,t !1mH;~ I,u,t !, ~11!

whereH0(I ,t) is the Hamiltonian of unperturbed problem
H;(I,u,t) is the perturbation, a 2p periodical function of the
variableu1 . Then the change inI 1 to first order inm van-
ishes after averaging overu1

05u1(t52`) and the change in
I 1 to second order inm averaged overu1

0 can be expressed i
terms of the change inI 1 found to first order inm:

^DI 1
~2!&5(

i 51

N K DI i
~1!

]DI 1
~1!

]I i
~0! L 1O@m3#. ~12!

Here ^•••& means the averaging overu1
0 and I (0)

5I (t52`), and DI 1
(2) and DI 1

(1) are the second and firs
order changes ofI 1 . If Hamiltonian ~11! is the periodical
function of all angle variables, then, after averaging expr
sion ~12! over all initial angle variables, we obtain the usu
form of Madey’s theorem:

^DI 1
~2!&5

1

2(i 51

N
]

]I i
0 ^DI 1

~1!DI i
~1!&1O@m3#. ~13!

Since Hamiltonian~7! is a periodic function ofF, and
assuming that the amplitude of the perturbation is weakm
!1), the theorem in form~12! can be employed to calculat
the energy exchange between the electrons and the EM
averaged overF0 to second order inm. Here I (0)5@g(t5
2`), P(t52`)#, u1

05F05F(t52`), and DI 15Dg
5^g(t51`)2g(t52`)&F0

. Averaging overF0 means
averaging over an electron population that is evenly dist
le
n

-

s-
l

ld

-

uted along the unperturbed trajectory. ThusnbVDg is the
power transferred from the EM laser field to an infinite
narrow electron beam with velocityV[Pc2/g and linear
densitynb . Integrating Hamilton’s equations along the u
perturbed trajectories, we can calculate the variations of
actions to first order inm:

DPi
~1!~P,r 0,F0!52mE

0

t]H;@P,r 0,t1F0 ,Q~0!~P,t!#

]Q i
dt,

~14!

Dg~1!~P,r 0,F0!52mE
0

t]H;@P,r 0,t1F0 ,Q~0!~P,t!#

]F0
dt,

where unperturbed motions Q1
(0)(P0,t), Q2

(0)(P0,t),
and Q3

(0)(P0,t) are determined by Eqs.~9!, and P0

5P(t52`). In the following discussion we will use the
notationP instead ofP0 unless otherwise specified.

Using the relations

]H;

]F
5

]H;

]F0
,

]H;

]Q1
5

]H;

]F0
2

]H;

]x0
,

]H;

]Q2
52

]H;

]y0
,
]H;

]Q3
52

]H;

]z0
, ~15!

and Eq.~12!, the energy exchange averaged overF0 can be
rewritten to the second order inm as follows:

Dg5 K 2
]2T

]Px]F0
S ]T

]x0
2

]T

]F0
D

2
]T

]y0

]2T

]Py]F0
2

]T

]z0

]2T

]Pz]F0
L

F0

, ~16!

where
T~P,r0 ,F0!5E
2`

1`

H;@P,r 0 ,t1F0 ,Q1
~0!~P,t!,Q2

~0!~P,t!,Q3
~0!~P,t!#dt. ~17!
Equation~16! can also be presented in the form

Dg5K ]Dg~1!

]Px
DPx

~1!1
]Dg~1!

]Py
DPy

~1!1
]Dg~1!

]Pz
DPz

~1!L
F0

,

~18!

whereDg (1)5]T/]F0 , andDP(1)52]T/]r01n]T/]F are
the first order change in energy and momentum of the e
tron. Using Eqs.~4!, ~7!, ~8!, and~9! the integralT @Eq. ~17!#
can be rewritten

T~P,r0 ,F0!52E
2`

1`

dtF11
B~P,F0 ,t!

g~P! G
3U@Pt/g~P!2r;~P,r0 ,F0 ,t!2r0#,

~19!
c-

where, for the LP EM wave,

B~P,F0 ,t!5
PyA

h~P!
cos@ f ~P!t1F0#

1
A2

4h~P!
cos@2 f ~P!t12F0#,

x;~P,F0 ,t!52
APy

h~P!2
sin@ f ~P!t1F0#

2
A2

8h~P!2
sin@2 f ~P!t12F0#, ~20!
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y;~P,F0 ,t!52
A

h~P!
sin@ f ~P!t1F0#,

z;~P,F0 ,t!50, h~P!5g~P!2Px , f ~P!5h~P!/P

and, for the CP EM wave,

B~P,F0 ,t!5
PyA

h~P!
cos@ f ~P!t1F0#

2
PzA

h~P!
sin@ f ~P!t1F0#,

x;~P,F0 ,t!52
PyA

h~P!2
sin@ f ~P!t1F0#

1
PzA

h~P!2
cos@ f ~P!t1F0#, ~21!

y;~P,F0 ,t!52
A

h~P!
sin@ f ~P!t1F0#,

z;~P,F0 ,t!5
A

h~P!
cos@ f ~P!t1F0#.

We can introduce the Fourier transformU(r )
5*U(k)exp(ik–r )dk in the integralT to obtain

T~P,r0 ,F0!5 (
n52`

1` E Fn~k,P!U~k!

3d@~k–P!2n~P–n!1ng~P!#

3
exp@2 i ~k•r0!2 inF0#

~2p!2
dk, ~22!

where, for the LP EM wave,

Fn~k,P!5 (
s52`

1`

g~P!Jn22sF ~A–Q!

h~P! GJsF ~k–n!A2

8h2~P!
G

3F11
n~P–A!

~A–Q!g~P!
1

2sh~P!

~k–n!g~P!G , ~23!

and, for the CP EM wave,

Fn~k,P!5g~P!einbJnF AQ

h~P!G
1

Aei ~n11!b

h~P!
@P–~e11ie2!#Jn11F AQ

h~P!G
1

Aei ~n21!b

h~P!
@P–~e12ie2!#Jn21F AQ

h~P!G ,
~24!

Qeib5~e1•Q!1 i ~e2•Q!, Q5k2
P~n–k!

h~P!
,

Jn(x) and Jn8(x) are ordinary Bessel functions. The deriv
tive of the integralT(P,r0 ,F0) with respect ofF0 is the
relativistic change in the energy to the first order in the sc
tering potential@28#. Using Eq.~18! the second order energ
exchange is finally obtained as

Dg~P,r0!5 (
n52`

1` E U~k!U~k8!nF2n~k8–P!d

3@~k8•P!1n~P–n!2ng~P!#

3
exp@2 i ~k–r0!2 i ~k8–r0!#

~2p!4
~25!

S k8–
]

]PD $Fn~k,P!d@~k–P!2n~P–n!1ng~P!#%dkdk8.

The problem of scattering in the plane wave is symmetri
with respect to the translation of the scattering center al
direction P, and we can choose (r 0–P)50. In this caser
5Ar0

2 is the impact parameter that is the minimal distance
the drift ~unperturbed! trajectory from the scattering cente
Averaging this expression over the initial position of th
electrons relative to the position of the scattering center,r0 ,
we obtain the IB emission-absorption coefficient in the U
regime:

Dg~P!5E d2r 0Dg~P,r0!

we obtain the IB emission-absorption coefficient in the U
regime

Dg~P!5 (
n52`

1` E U~k!U~k8!nF2n~k8,P!d@~k8•P!

1n~P–n!2ng~P!#
d~k'1k'8 !

~2p!4 S k8–
]

]PD
3$Fn~k,P!d@~k–P!2n~P–n!1ng~P!#%dk dk8,

~26!

wherek' andk'8 are the componentsk andk8, perpendicular
to P. Integrating this equation overk8, the final expression
of the UHI emission-absorption coefficient is thus

Dg5 (
n52`

1` E U~k!2n

2~2p!4P
S k–

]

]PD
3$uFn~k,P!u2d@~k–P!2n~P–n!1ng~P!#%dk.

~27!

The facts thatF2n(2k,P)5Fn* (k,P) and U(k) is isotropic
were used to derive Eq.~27!. This result is indeed interest
ing, and is relevant to an arbitrary scattering potential and
arbitrary intense laser field. In Sec. IV we will evaluate th
integral in order to study the Coulomb scattering case
evant to UHI laser-plasma interaction.

The Dirac distribution involved in Eq.~27! clearly dis-
plays the origin of the energy exchange mechanism: this
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change mechanism is resonant, and these resonances ar
monic Compton resonances identified in Ref.@26#. In the
nonrelativistic limits expression~22! for T(P,r0 ,F0) be-
comes

T~P,r0 ,F0!5 (
n52`

1` E Jn~k–A!U~k!d~k–P2n!

3
exp@2 i ~k–r0!2 inF0#

~2p!2
dk, ~28!

so that coefficientDg becomes

Dg5
1

2~2p!4 (
n52`

1` E nJn
2~k–A!k2U2~k!S P

P2
•

]

]kD
3d~k–P2n!dk. ~29!

This nonrelativistic expression has been obtained with
Madey’s theorem in previous studies@13,14# so the fact that
the low energy limit agrees with these results gives co
dence in this result, and formula~27! can be viewed as a
generalization of the expression of the energy exchange
nonrelativistic small-angle classical collisions@Eq. ~29!# to
the UHI relativistic regime.

Let us now consider the Coulomb potential as the scat
ing potential. We assume that this Coulomb scattering po
tial is screened above distancesr .r max51/kmin on the order
of the Debye length, and to avoid divergence near the s
tering center we use the classical procedure of Coulomb
tential ‘‘softening’’ below distancesr ,r min51/kmax of the
order of the Landau length which approaches the class
electron radius in the relativistic case. Then the class
screened and softened Coulomb potential can be writte
@29,14#
har-

t

-

or

r-
n-

t-
o-

al
al
as

U~r !5
eZexp~2kminr !@12exp~2kmaxr !#

r
. ~30!

Even for this classical Coulomb potential the integ
T(p,r0 ,F0) is rather complicated to evaluate, and the sc
ing of the process with respect to the various parameter
ficult to display. NeverthelessT(P,r0 ,F) can be calculated
in two complementary limiting cases which are physica
relevant: for remote collisions when the amplitude of t
electron oscillations in the EM field is smaller than the im
pact parameter,

r.r ;~P,F0 ,t !, ~31!

and for instantaneous collisions when the duration of
scattering process is smaller than the wave period,

r,
v~g2P•n!

Pc2
. ~32!

In typical laser-plasma experiments the drift energy of
fast electrons is of the order of a few keV, so that bo
regimes can overlap betweenr min and r max, and the relative
importance of the two regimes is determined by the value
the Debye length.

IV. ENERGY EXCHANGE FOR REMOTE COLLISIONS

In this section we will perform an integration of the pr
vious formulas for remote collision emission and absorpt
@Eq. ~27!#. In the UHI regimeA.1, the amplitude of the
electron oscillations is of the order of the wavelength, a
inequality ~31! means that the impact parameter is larg
than the wavelength. Expanding integral~19! to the first or-
der in r; we obtain, for the linear polarization,
T~P,r0 ,F0 ,kmin ,kmax!5gL,0~P,r0 ,kmin ,kmax!1gL,1~P!k1~P,r0 ,kmin ,kmax!cos@F01B~P,r0!#

1gL,2~P,r0!k2~P,r0 ,kmin ,kmax!sin@F01B~P,r0!#1gL,3~P!k3~P,r0 ,kmin ,kmax!

3cos@2F012B~P,r0!#1gL,4~P,r0!k4~P,r0 ,kmin ,kmax!sin@2F012B~P,r0!#, ~33!
where the coefficientsg andk are given by

k1~P,r0 ,kmin ,kmax!5K0@h~P,kmin!r~P,r0!#

2K0@kmaxr~P,r0!#,

k2~P,r0 ,kmin ,kmax!5h~P,kmin!K1@h~P,kmin!r~P,r0!#

2kmaxK1@kmaxr~P,r0!#,

k3~P,r0 ,kmin ,kmax!5K0@2h~P,kmin!r~P,r0!#

2K0@kmaxr~P,r0!#,

k4~P,r0 ,kmin ,kmax!52h~P,kmin!K1@2h~P,kmin!r~P,r0!#

2kmaxK1@kmaxr~P,r0!#,
gL,1~P!5
ZAPyM

2

h~P!P3
,

gL,2~P,r0!5
ZAg~P!@ t0~P,r0!g~P!2y0h~P!2Pyx0#

h~P!P2r~P,r0!h~P,kmin!
,

gL,3~P!5
ZA2@g~P!Px2P2#

4h~P!P3
,

gL,4~P,r0!5
ZA2g~P!@ t0~P,r0!Px2x0#

2h~P!P2r~P,r0!h~P,kmin!
,

h~P,kmin!5Ah~P!2/P21kmin
2 ;
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the timet0(P,r0)5(P–r0)/P2 is the instant of time when the
electron is at the minimal distance from the Coulomb cen
and r(P,r0)5Ar0

22(P–r0)2/P2 is the impact parameter
Kn(x) is a modified Bessel function ofnth order, and
B(P,r0)5h(P…t0(P,r0) is the value of thex2t phase at
r,
the time t0(P,r0). We will not present the expression fo
gL,0(P,r0 ,kmin ,kmax), because the first term in Eq.~33! does
not depend onF0 and, therefore, does not give any cont
bution to Dg. Similarly, for circular polarization, we
obtain
om
utoff:
T~P,r0 ,F0 ,kmin ,kmax!5gC,0~P,r0 ,kmin ,kmax!1@gC,1~P!k1~P,r0 ,kmin ,kmax!1gC,2~P,r0!k2~P,r0 ,kmin ,kmax!#

3cos @F01B~P,r0!#1@gC,3~P!k1~P,r0 ,kmin ,kmax!1gC,4~P,r0!k2~P,r0 ,kmin ,kmax!#

3sin @F01B~P,r0!#, ~34!

where the coefficientsg are given by

gC,1~P!52
ZAPzM

2

h~P!P3
,

gC,2~P,r0!5
ZAg~P!@ t0~P,r0!g~P!2y0h~P!2Pyx0#

h~P!P2r~P,r0!h~P,kmin!
,

gC,3~P!5
ZAPyM

2

h~P!P3
,

gC,4~P,r0!5
ZAg~P!@ t0~P,r0!g~P!2z0h~P!2Pzx0#

h~P!P2r~P,r0!h~P,kmin!
.

Given these two results we can explicitly calculate@30# the energy transfer from a LP EM wave to one electron resulting fr
remote Coulomb collisions whenkmin is set to zero, because, as we will see below, our approach provides a natural c

Dg~P,r0!52
K0

2~hr!g

2P2 S 2gL,1
2 1

gL,2
2 M2

g2 D 1
K1

2~hr!g

2P2 S gL,2
2 P2c2

g2
2gL,1

2 D 1
K0~hr!K1~hr!vghr

c2P3

3S gL,2
2 1gL,1

2 2
M2gL,2

2 c4P2

~vrgh!2
2

@M2~h21c2Py
2!2g2h2#c4P2gL,1

2

2~vrh!2M2Py
2 D 2

2K0
2~hr!g

P2 S M2gL,3
2

g2
12gL,4

2 D
1

2K1
2~hr!g

P2 S gL,4
2 P2c2

g2
2gL,3

2 D 1
8K0~hr!K1~hr!vghr

c2P3 S gL,3
2 1gL,4

2 1
e8Z2A4M2@2P2x0

21~Px
22P2!r2#

27vP4~hr!4 D ,

~35!
ies.
e

ld

lung

s-
e
re-
o-

her
where

gL,15
D1M2Py

hP3
, gL,252

D1g~Pyx01y0h!

hP2r
,

gL,35
D2~M22gh!

4hP3
, gL,452

D2A2x0g

4hP2r
,

h5Av2h2

c4P2
1kmin

2 , g25M21c2P2,

M25m2c41
e2A2

2
, h5g2cPx ,

D15
e3ZAv

c4
, D25

e4ZA2v

c5
.

From this point on, the results come in usual physical unit
The parameterh5vt has a simple physical meaning in th
nonrelativistic limit as the ratio of the period of the EM fie
to the scattering time: (t5r/V). We see from Eq.~35! that
the expression forDg for IB is expressed in term of modified
Bessel function as well of the spontaneous bremsstrah
@31# and has the following asymptotic values:Dg
}exp(2h) at h→` and Dg} ln(h)/h2 at h→0. Therefore,
Dg has the natural cutoffr5cP/vh (V/v in the nonrela-
tivistic limit ! in the approach used even forr max→`.

Note that in the nonrelativistic limit we recover the cla
sical linear bremsstrahlung@14#, so that we conclude that th
nonrelativistic approximation always take place in the
mote collision case. This is quite logical, as the quiver m
tion is supposed to be small with respect to all the ot
energy scales of the problem@n51, (k–A)!1, J1(k–A)
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'(k–A)/2#. In the relativistic case IB is nonlinear even u
der condition~31!, because of the dependence of the rela
istic massM on the intensity of the EM field.

In order to discuss the previous results, we introduce a
of polar coordinates (C,r) in a plane perpendicular toP,
which go through the position of the Coulomb center~see
Fig. 1!:

x05
rPxPz

PAPx
21Py

2
cosC2

rPy

APx
21Py

2
sinC,

y05
rPyPz

PAPx
21Py

2
cosC1

rPx

APx
21Py

2
sinC, ~36!

z052
APx

21Py
2r cosC

P
.

In this case the impact parameter becomesr5Ar0
2, andC is

the azimuthal angle corresponding to a polar axis paralle
P. After averaging over this azimuthal angleC for the LP
EM wave we obtain

Dg~P,r0!52
K0

2~hr!g

P2 S gL,1
2 1

^gL,2
2 &M2

2g2 D
1

K1
2~hr!g

2P2 S ^gL,2
2 &P2c2

2g2
2gL,1

2 D
1

K0~hr!K1~hr!vghr

c2P3

3~^gL,2
2 &1gL,1

2 !2K0
2~2hr!

3S 2M2^gL,4
2 &

gP2
1

4ggL,3
2

P3 D
1K1

2~2hr!S 2
2c2ggL,3

2

P2
1

2^gL,4
2 &

g D
1K0~2hr!K1~2hr!

S 8gvhrgL,3
2

c2P3
1

8hvrg^gL,4
2 &

c2P3 D , ~37!
-

et

to

where

^gL,2
2 &5

D1
2g2~P2h22M2Py

2!

2h2P6
, ^gL,4

2 &5
D2

2M2~P22Px
2!

32h2P6
,

and, for the CP EM wave,

Dg~P,r0!52
K0

2~hr!g

P2 S gC,1
2 1gC,3

2 1
^gC,2

2 1gC,4
2 &M2

2g2 D
1

K1
2~hr!g

2P2 S ^gC,2
2 1gC,4

2 &P2c2

2g2
2gC,1

2 2gC,3
2 D

1
K0~hr!K1~hr!vghr

c2P3

3~^gC,2
2 1gC,4

2 &1gC,1
2 1gC,3

2 !, ~38!

where

gC,1
2 1gC,3

2 5
D1

2M4~Py
21Pz

2!

h2P6
,

^gC,2
2 1gC,4

2 &5
D1

2g2@2P2h22M2~Py
21Pz

2!#

2h2P6
,

M25m2c41e2A2.

The averaging overC can be considered as the classic
random phase approximation in the context of weak tur
lence plasma theory, or as classical phase averaging in
context of beam-wave interaction theory. Note that whenDg
is averaged over the azimuthal angleC it has the asymptotic
valuesDg}1/h2 at h→0. Since the perturbation theory wit
respect to the Coulomb potential is developed the valid
condition of the used approximation is

r.H e2Zg

P2c2
,r ;J . ~39!

Similarly the general expression ofDg(P,r,C,kmax,kmin)
can be calculated for the general softened and screened
lomb potential with kmax51/r min , kmin51/r max. However,
the final result is rather cumbersome for the relativistic
gime, and we present the result in the nonrelativistic limi
Dg~P,r,kmax!5
Z2e6A2

m3c3v2V

a4

2 F22K1
2~ra!cos2w2K0

2~ra!~4 cos2w1sin2w!1raK0~ra!K1~ra!~4 cos2w12 sin2w!

22K1
2~rkmax!cos2w

kmax
2

a2 2K0
2~rkmax!

kmax
2

a2 sin2w1rkmaxK1~rkmax!K1~rkmax!
kmax

2

a2 sin2w

14
kmax

a
K1~rkmax!K1~ra!cos2w22kmaxrK1~rkmax!K0~ra!2

rkmax
2

a
K0~rkmax!K1~ra!sin2w

1
kmax

2

a2 K0~rkmax!K0~ra!sin2wG , ~40!
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wherea5v/V, V5P/m is the electron velocity andw is
the angle betweenA andP. Note thatDg does not depend
on C in the nonrelativistic limit because the electron moti
in weak EM wave is one dimensional. We have integra
this expression forDg(P,r,C,kmax,kmin) over C andr and
the final result for the power transferQ from the laser field to
an electron population with densitynb for a LP EM wave is
given by the expression

Q~P,kmax,kmin!

5nbVE
0

1`E
0

2p

Dg~P,r,C,kmax,kmin!rd rdC

5
pc2nb

2h2P
S gL,1

2 hg

M2
1gL,3

2 2^gL,4
2 &

c2P21chPx

2hg D
1

pc2nb

2h2P
$~^gL,2

2 &2gL,1
2 !@11 ln~kmax/h!#

1~^gL,4
2 &2gL,3

2 !@11 ln~kmax/2h!#%, ~41!

and, for the CP EM wave,

Q~P,kmax,kmin!5
pc2nbh

2h2PM2
~gC,1

2 1gC,3
2 !

1
pc2nb

2h2P
$@^gC,2

2 1gC,4
2 &2~gC,1

2 1gC,3
2 !#

3@11 ln~kmax/h!#%, ~42!

FIG. 1. Coordinate system used in the description of the s
tering processes.P is the drift momentum of the electron,A is the
vector potential of the LP EM wave,n is the direction of the wave
propagation,r0 is the radius vector of the Coulomb center, andr is
the distance between the Coulomb center and electron trajec
~drift! unperturbed by the Coulomb field~shown by the dashed
line!. In the plane perpendicular to the drift trajectory and extend
through the Coulomb center, the polar coordinates (C,r) are intro-
duced.
d

where r min51/kmax can be either the Landau lengt
Ze2g/P2c2 for classical collisions or the de Broglie lengt
\/P for quantum collisions, andr max51/kmin is the Debye
lengthr De5A4pe2ne /Te of a plasma with a electron densit
ne and electron temperatureTe . Using this expression forQ
the rate of IB in plasma with an electron distribution functio
F(P) can be expressed as

ybrem5

neE Q~P,kmax,kmin!F~P!dP

W
, ~43!

whereW5v2A2/8pc21ne(g2mc2) is the energy density
of an EM wave in plasma.

In the nonrelativistic limitM2'mc2, D250, and for
r min'\/P, r max@V/v Eq. ~41! becomes

Q5
e6Z2A2nb

v2P3c2
$2 cos2w1~123 cos2w!@ ln~P2/mv\!11#%,

~44!

which coincides with the quantum-mechanical formula d
scribing the so called Marcuse effect@32#, and obtained in

t-

ry

g

FIG. 2. The domains of the anglesw ~the angle between the
initial momentum of the electron and the wave polarization dir
tion! andc ~the azimuthal angle with the polar axis along the wa
polarization direction!, where the LP EM wave is amplified by th
electrons~gray region!, and where the LP EM wave is absorbed b
the electrons~white region! for Pc/M50.2 and ln(kmax/2h)510.
The angles are given in rad.

FIG. 3. The same as Fig. 2,Pc/M50.8.
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the first Born approximation. Herew is the angle between th
vectorsA andP. We see from Eq.~44! that negative absorp
tion is possible for a LP EM wave if the beam velocityV lies
inside a cone whose axis coincides with the wave polar
tion direction ey , and whose generatrices take an anglew
'arccos(1/A3) with this axis. For a CP EM wave this con
dition requires that the beam velocity lies outside a co
whose axis coincides with the wave propagation direction
and whose generatrices make an anglef'arccos(1/A3)
with this axis.

Formula ~40! can be considered as a generalization
Marcuse’s effect to take into account the dependence on
impact parameterr. Note that in the nonrelativistic limit we
recover the classical linear bremsstrahlung@14#, and the con-
dition (n51, (k–A)!1, J1(k–A)'(k–A)/2 for Eq. ~29! in
k space is equivalent to the condition for a remote collis
@Eq. ~31!# in r space. This is quite logical, as the quiv
motion is supposed to be small with respect to scale of
problem. IB in the relativistic limit is nonlinear even und
condition ~31! because of the dependence of the effect
massM on the intensity of EM field.

What we have found here is the relativistic formula f
the Marcuse’s effect. For a LP EM wave,Q also depends on

FIG. 4. The same as Fig. 2,Pc/M51.2.

FIG. 5. The domains of the anglef ~the angle between the
initial momentum of the electron and the wave propagation dir
tion n) and of the normalized momentum of the electron bea
Pc/M , where the CP EM wave is amplified by the electrons~gray
region! and where the CP EM wave is absorbed by the electr
~white region! for ln(kmax/2h)510. The angle is given in rad.
-

e

f
he

n

e

e

the azimuthal anglec when we consider an electron distr
bution function such thatPc.mc2 ~see Figs. 2–4, where w
introduce the spherical coordinate systemPx
5P sinw cosc,P y5Pcosw, andPz5P sinw sinc). We see in
Figs. 2–4 in thew, c plane that the region where negativ
absorption is possible decreases with respect to the clas
nonrelativistic case, and is located near the direction of
wave propagation if the kinetic energy of the electron d
motion increases and becomes larger than the electron
mass. We see in Fig. 5 that in the case of a CP EM wave,
value of the anglef between the electron momentum an
the direction of the wave propagation where negative abs
tion of a CP EM wave is possible is determined by the ra
of the electron momentum to the electromagnetic m
Pc/M . The maximum wave absorption takes place wh
both the relativistic electron beam and the wave are pro
gating in the same direction~see Figs. 6 and 7!.

The relativistic Marcuse effect has been investigated fo
weak EM wave@33,34# in the framework of quantum me
chanics. To compare our result with the result obtained,
example, in Ref.@34#, let us introduce the notation used
Ref. @34#: Px5P cosu, Py5Psinu cosf, and Pz
5P sinu sinf. Then the rate for IB can be presented as f
lows @33,34#: Dg5t icos2f1t'sin2f. In the approximation
used in Ref. @34#—eA/mc2!1, u'g/mc2!1—we have
g3'g4'0, g'Pc, and h'm2c4(11u2)/2g, where u
5ug/mc2 and, using the general expression~40!, we obtain

-
,

s

FIG. 6. The dependence of the power of the CP EM wave
sorbed by the electrons,Q, scaled byD1

2nbc2/2h2PM2, on the
anglesw, andc for ln(kmax/2h)510. The angles are given in rad.

FIG. 7. The dependence of the power of the CP EM wave
sorbed by the electrons,Q, scaled byD1

2nbc2/2h2PM2, on the nor-
malized momentum of the electrons,Pc/M , and on the angle be
tween the initial momentum of the electrons and the CP w
propagation direction,f, for ln(kmax/2h)510. The angle is given in
rad.
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t i}2
~12u2!2

~11u2!4
@11 ln~2g2/\vmc2!#2

4u2

~11u2!4
, t'}2

1

~11u2!2
@11 ln~2g2/\vmc2!#, ~45!

that coincide with Eqs.~17! and ~18! in Ref. @34#.
If the drift energy is nonrelativistic or much less than the energy of the oscillating motionP2c2!M2, thenh'g'M , and

Eq. ~41! gives

Q~P,kmax,kmin!5
pD12nbc12

4M3V3v2~V2/v2r max
2 11!

H 2 cos2w

AV2/v2r max
2 11

1~123 cos2w!@12 ln~r minv/V!#J ~46!

and, for the CP EM wave,

Q~P,kmax,kmin!5
pD12nbc12

4M3V3v2~V2/v2r max
2 11!

H 2 cos2f

AV2/v2r max
2 11

2~123 cos2f!@12 ln~r minv/V!#J . ~47!
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After averagingQ in Eqs. ~46! and ~47! over an isotropic
electron distribution function, the terms that are proportio
to the logarithm vanish. As a result the averaged rate of IB
the relativistic UHI regime is reducedM3 times as compared
with one obtained in the case of a weak EM wave.

V. RELATIVISTIC EMISSION AND ABSORPTION FOR
INSTANTANEOUS COLLISIONS

Let us now calculate integral~19! for instantaneous colli-
sions@Eq. ~32!#. Within the framework of this approximation
the scattering events is instantaneous and take place at
t0 . In this case the expression forr;@P0 ,F01t f (P0)# in
integral ~19! can be expanded above the scattering mom
t0 :

r;@(P0 ,F01t f ~P0!#5r;@P0 ,F01t0f ~P0!#1~t2t0!

3
]r;@P0 ,F01t0f ~P0!#

]F0

5r;@P0 ,F01t0f ~P0!#

1~t2t0!P;@P0 ,F01t0f ~P0!#.

~48!

Here we will again use the unitiese5m5c5v51 for alge-
braic manipulations, and will distinguish among the electr
momentum at the scattering,P, the oscillating component o
the electron momentum at the scattering,P;, and the drift
component of the electron momentum at the scattering,P0 .
Then integral~19! for T(P0 ,r0 ,F0) can be calculated fo
scattering potential~30!
l
n

me

nt

n

T~P0 ,r0 ,F0!5
B~P0 ,F0 ,t50!

P~P0 ,F0!
$K0@kminr~r0 ,P0 ,F0!#

2K0@kmaxr~r0 ,P0 ,F0!#%, ~49!

where

P~P0 ,F0!5P01P;~P0 ,F0!,

r~P0 ,r0 ,F0!5Ar2~P0 ,r0 ,F0!,

r ~P0 ,r0 ,F0!5r01r;~P0 ,F0!2P~P0 ,F0!t0~P0 ,r0 ,F0!,
~50!

t0~P0 ,r0 ,F0!5
P~P0 ,F0!•~r01r;!

P2~P0 ,F0!
,

F0[F01 f ~P0!t0 ,

r (P0 ,r0 ,F0), r0 , and r;(P0 ,F0) are the total distance
drift, and oscillating component of the distance, respective
between the electron and the Coulomb center at the sca
ing phase F0 . Then the energy exchang
Dg(P,r,C,kmax,kmin) can be calculated by the addition o
Eq. ~16!.

We restrict ourselves to the nonrelativistic limit becau
of the complexity of the algebraic manipulation. In the no
relativistic approximation, we obtain
B~P0 ,F0 ,t50!51, f ~P0!51,

r;~P0 ,F0!5r;~F0!, P;~P0 ,F0!5P;~F0!, ~51!

T~P0 ,r0 ,F0!5
$K0@kminr~P0 ,r0 ,F0#2K0@kmaxr~P0 ,r0 ,F0# !%

P~P0 ,F0!
,
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In order to calculateDg integrated over impact parameterr and azimuthal angleC, it is more convenient to employ Eq.~29!.
The expression of the sum of the Bessel function withd functions in Eq.~29! can be presented as follows:

(
n52`

1`

nJn
2~k–A!S P0

P0
2
•

]

]kD d~k–P02n!

5K S k

k2
•

]2

]P0]F08
U

F
085F0

D E dt expH 2
~k–P0!t1~k–A!@sin~ t1F0!2sinF08#

i J L
F0

. ~52!
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Expanding sin(t1F0) above the scattering momentt0 , Eq.
~52! can be rewritten as follows for instantaneous collisio

(
n52`

1`

nJn
2~k–A!S P0

P0
2
•

]

]kD d~k–P02n!

'K ~k–A!cosF0S P

P2
•

]

]kD d~k–P!L
F0

. ~53!

Then inserting this expression into Eq.~29! and integrating
overk for the scattering potential~30! the wave energy trans
fer to the electrons can be calculated for the instantane
collisions in the nonrelativistic limit

Dg~P,kmax,kmin!522pK ~P–P;!@ ln~kmax/kmin!11#

P0P3 L
F0

,

~54!

where

P5P01P;, P;5A cosF0 .

Equation~54! coincides with the expression for the ener
exchange of IB obtained in the impact approximati
@15,16#. The validity of the impact approximation for smal
angle collisions was also shown as an asymptotic limit of
Born approximation@35#.

It is interesting to note that, although the impact appro
mation and the approximation for small-angle collision~or
‘‘straight path approximation’’! lead to the same expressio
for the IB rate averaged over the impact parameter„within
the overlap of the regions of their validity@see Eq.~54! and
Ref. @35##… they give different expressions for the IB rate
a function of the impact parameter and the angle between
wave polarization direction and the initial electron mome
tum, w. Let us consider this fact in more detail. For simpli
ity, we assume that the collision is nonrelativistic, instan
neous (e5vr/V!1), and remote (eA/mcv!r). Electrons
suffer small-angle scatteringx5eZ/rmV2!1, the LP EM
wave is weak (j5V; /V5eA/cmV!1), and V/v
!r max, rmin!r. These hypothesis can be summarized in
form

H eA

mcv
,r min ,

eZ

mV2J !r!
V

v
!r max,
:

us

e

-

he
-

-

e

j5eA/cmV!1. ~55!

Using the expression derived in the impact approximat
in Ref. @16# @Eqs.~2.24! and ~2.25!# for the change in elec-
tron energy due to the scattering in EM and Coulomb fiel

Dg~x,w!5mV2
u~w,F0!

V
j sinF0@~12cosx!

3~cosw1jsinF0!1sinx sinw cosC#,

~56!

whereu(w,F0)5VA112j sinF0cosw1j2sin2F0 is the total
velocity of an electron in a LP EM wave, after averagin
over F0 , and C and with assumptions~55!, Dg can be
reduced to the form

Dg~x,w!5mV2x2j2~123 cos2w!@11O~j,e,x!#.
~57!

In the case of remote collisions,Dg(x,w) can be obtained
from Eq. ~37! with assumptions~55!

Dg~x,w!52mV2x2j2cos2w@11O~j,e,x!#. ~58!

This expression can be also calculated by the straightforw
integration of the equations of the electron motion@for ex-
ample, by integration of Eq.~44! in Ref. @14# over k andk1
under condition~55!#. The possible reason for the differenc
between the dependence ofDg(x,w) on w in Eqs.~57! and
~58! can be found by analyzing the impact approximation

It is assumed in the context of the impact approximat
@16# that the electron interacts with only an EM wave befo
and after the scattering, while the scattering is elastic~the
electromagnetic field does not affect the scattering proc!
and instantaneous with respect to the period of the EM wa
The absorption from the EM field to the thermal energy
identified with the reorientation of the quiver into transl
tional motion in an elastic collision. Although the model
simple, it cannot be considered rigorous. The condition t
the collisions are instantaneous implies that scattering ta
place in the static magnetic and electric fields~the ‘‘frozen’’
EM field of the wave!. If these fields are sufficiently intense
they can modify the elastic scattering. This means that
condition vr/V!1 is not a sufficient condition for the im
pact approximation@36# to be valid. It should be noted tha
the expansion in the small parameter defined as the EM
quency times on the factor which depends on the intensit
the EM field are used in various versions of the Kra
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Watson theorem@9#, and that these expansions will brea
down at sufficiently intense EM field. Another reason is th
the action of the component of the Coulomb force that
longitudinal to the electron velocity at the scattering is n
taken into account in this approximation, because this co
ponent does not affect the electron deflection at the ela
scattering. As a result, in this model, the energy exchang
absent at the scattering by the one-dimensional short-ra
potential that is also the problem in the general case.

This difference in results@between Eqs.~57! and 58!# is
not important for practical purposes, because the IB rate
eraged over the impact parameter is interesting for ato
physics. It is more important that, according to Eq.~54! ~see
also Ref.@35#!, the impact approximation gives the corre
result for the IB rate averaged over the impact paramete
least for small-angle nonrelativistic scattering in the prese
of an intense EM wave.

VI. CONCLUSION

In this study we have addressed and solved several is
relevant to the problem of collisional absorption of ultrahi
intensity relativistic laser pulses. We have set up this pr
lem with the help of a relativistic Hamiltonian formalism.

Within this framework the collisional absorption~emis-
sion! is clearly due to a set of resonances@Eq. ~27!# which
can be identified as harmonic Compton resonances indu
by virtual photons of the Coulomb field. From a physic
point of view these Compton resonances are relativistic L
dau resonances between the drift motion of the electron
the beating of the laser wave with the Coulomb longitudi
virtual photon~the Fourier component of the Coulomb p
tential!. In order to calculate the energy exchange betw
the wave and the electron, we have to sum and integrat
the interaction matrix elements corresponding to each
these resonances. We were able to perform such a com
calculation under two complementary hypotheses. First w
the impact parameter is larger than the amplitude of
quiver oscillation~the so-called remote collision approxim
tion!, and then under the impact approximation when
interaction time is shorter than the period of the drivi
wave.
y,
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The expression for a frequency spectrum~energy per unit
area frequency interval! as a function of the impact param
eter is known for spontaneous bremsstrahlung@31#. The re-
sults we have obtained in using this allowed us to study
scaling of the stimulated bremsstrahlung with respect to
impact parameter, the quiver, and the drift momentum, a
also to explore the relativistic regime. This latter study
vealed some profound modifications of the gain function
this relativistic regime.

We have integrated these coefficients over the impact
rameter, and derived the power transfer from a laser wav
an electron distribution. Taking the nonrelativistic limit o
our results, we have recovered the well known nonrelativis
result. However, in doing so we discover a very subtle d
ference between the averaged and nonaveraged~over the im-
pact parameter! coefficients in the impact approximation. W
resolved this point and discussed the relevance of the var
approximations.

Finally, besides the results presented, from a meth
ological point of view we have shown that Madey’s theore
is not only useful to study free electron lasers but can be v
helpful for all relativistic radiation problems. Indeed
Madey’s theorem is usually used to calculate small sig
gain in the theory of free electron lasers and microwave
vices@18,21#. In this weak EM wave approximation, the en
ergy gainDg is proportional to the squared amplitude of a
EM field, and is nonlinear with respect to the external sta
field. In this paper we have used Madey’s theorem in
opposite limiting case: when the external static~or scatter-
ing! field is weak and the EM wave can have an arbitra
intensity. In this approximationDg is proportional to the
squared scattering potential and is nonlinear with respec
the amplitude of EM field@see Eqs.~27! and ~29!#.
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